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Record power conversion efficiency (PCE) for organic–inor-
ganic halide perovskite solar cells (PSCs) has been rapidly boos-
ted  from  3.8%  to  25.5%,  approaching  the  Shockley–Queisser
(S–Q) limit for single-junction solar cells[1−3]. Multi-junction tan-
dem  solar  cells  provide  a  feasible  approach  to  break  the  effi-
ciency  limit  for  single-junction  solar  cells  by  maximizing  the
use  of  the  solar  spectrum  and  photon  energy.  All-perovskite
tandem solar cells have the advantages of tunable bandgaps,
solution processability, and flexibility[4−6]. As long-wavelength-
light  absorbers,  low-bandgap  (Eg:  ~1.1–1.3  eV)  perovskites
play a vital  role in making efficient all-perovskite tandem sol-
ar cells[7, 8].  Generally, low-Eg perovskites are prepared by par-
tially  substituting  lead  (Pb2+)  with  tin  (Sn2+)[9].  However,
mixed Sn–Pb perovskites usually suffer from short carrier life-
times, high defect density, and easy oxidation of Sn2+[10].

To  obtain  high-quality  Sn–Pb  perovskite  films  and  effi-
cient  low-Eg PSCs,  many  efforts  have  been  devoted  in  the
past years.  Zhao et al.  demonstrated an enhanced carrier life-
time up to ~250 ns in (FASnI3)0.6(MAPbI3)0.4 (FA = formamidini-
um, MA = methylammonium) perovskite film with a bandgap
of  1.25  eV  by  regulating  its  growth  process.  Improved  crys-
tallinity  and  enlarged  grain  size  were  obtained.  The  corres-
ponding solar  cells  gave a certified PCE of  ~17%[11].  They fur-
ther reduced the defects, suppressed the trap-assisted recom-
bination, decreased the dark saturation-current density in thick-
er Sn–Pb perovskite films via chlorine or bromine doping, en-
hancing the  PCEs  to  18.1% and ~19%,  respectively[12, 13].  This
enables  making  two-terminal  (2-T)  tandem  solar  cells  with  a
PCE  of  21%.  In  early  2019,  Zhu et  al.  got  a  PCE  of  20.5%  for
single-junction  low-Eg PSCs  by  incorporating  guanidinium
thiocyanate  (GuaSCN)  into  perovskite[8].  GuaSCN  greatly  pro-
longs  carrier  lifetime  to  1232  ns,  which  is  almost  ten  times
longer than that of the control one, resulting from reduced de-
fect  density  in  perovskite  films.  Tan  group  improved  the  effi-
ciency of low-Eg PSCs to 21.1% by adopting Sn powders to en-
able  a  comproportionation  reaction  of  Sn  and  Sn4+ and  thus
suppress the oxidation of Sn2+[14], delivering high-quality low-
Eg perovskite  films  with  long  charge  carrier  diffusion  length
(~3 μm) and less defects.

Tan et  al.  used  a  surface-anchoring  zwitterionic  antioxid-
ant,  formamidine  sulfinic  acid  (FSA),  to  reduce  Sn4+ back  to
Sn2+ and  meanwhile  passivate  both  electron-donating  and

electron-accepting defects  on the grain surfaces (Fig.  1(a))[15].
They  proposed  that  FSA  can  coordinate  with  perovskite  pre-
cursor via dative bonding, resulting in delayed and more uni-
form crystallization due to the less volatile nature of FSA com-
pared with DMSO. X-ray photoelectron spectroscopy (XPS) res-
ults  indicated  that  Sn4+ was  reduced  significantly.  The  en-
hanced photoluminescence (PL) intensity and prolonged carri-
er  lifetime  indicated  decreased  defect  density.  More  import-
antly,  the  PL  imaging  for  the  films  (Figs.  1(b) and 1(c))  sug-
gests  that  FSA  significantly  improved  the  uniformity  of  per-
ovskite  film.  FSA-based  PSCs  gave  PCEs  of  21.7%  and  18.8%
for aperture areas of 0.049 and 1.05 cm2, respectively.

Though  the  efficiency  of  low-Eg Sn–Pb  PSCs  has  been
greatly  improved,  the  relatively  poor  stability  originating
from  volatile  MA+ inhibits  the  development  of  low-Eg PSCs
and  their  application  in  all-perovskite  tandem  solar  cells.  Li
et al. designed a two-step bilayer interdiffusion growth meth-
od to reduce MA proportion in FA0.85MA0.1Cs0.05Sn0.5Pb0.5I3 per-
ovskite film[16]. Methylammonium thiocyanate (MASCN) was ad-
ded into SnI2/PbI2 precursor,  followed by spin-coating on PE-
DOT:PSS  substrates,  and  then  FAI  solution  in  isopropanol
(IPA)  was  spin-coated  (Fig.  2(a)).  This  two-step  process  could
prolong  the  ion  interdiffusion  stage  and  slow  down  the  cry-
stallization.  Moreover,  Sn2+ oxidation  was  suppressed,  which
benefits  from  the  strong  bonding  between  SCN– and  Sn2+.
The  temperature-programmed  desorption  mass  spectro-
metry  (TPD-MS)  results  suggested  that  FA0.85MA0.1Cs0.05Sn0.5-
Pb0.5I3 has  better  thermal  stability  than  one-step-processed
(FASnI3)0.6(MAPbI3)0.4 perovskite,  which  could  be  due  to  re-
duced MA content.

Time-of-flight  secondary  ion  mass  spectroscopy  (TOF–
SIMS)  reveals  that  volatile  MA+ tends  to  accumulate  at  the
film  surface  and  evaporates  under  heating,  leading  to  in-
creased  recombination  center  caused  by  MA+ and  I– vacan-
cies and deterioration of device performance. Hence, they pro-
posed a  strategy to passivate the surface and grain boundar-
ies  by  introducing  one-dimensional  (1D)  PySnxPb1–xI3 per-
ovskite on surface of mixed Sn–Pb perovskite film[16]. The pho-
toluminescence  (PL)  was  remarkably  enhanced  and  the  carri-
er  lifetime  was  boosted  from  670  to  1100  ns.  Cross-sectional
Kelvin  probe  force  microscopy  (KPFM)  showed  diminished
electric-field  difference  at  hole-transport  layer  (HTL)/per-
ovskite interface and reinforced electric-field difference at per-
ovskite/electron-transport  layer  (ETL)  interface,  further  prov-
ing the surface passivation by PySnxPb1–xI3 and improved junc-
tion  quality.  The  PCE  for  1.28  eV  bandgap  PSCs  was  im-
proved  to  20.4%  with  a  high  open-circuit  voltage  (Voc)  of
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0.865  V.  An  encapsulated  cell  remained  92%  of  its  original
PCE after maximum power point (MPP) tracking for 450 h un-
der continuous one-sun illumination, showing good operation-
al stability (Fig. 2(b)).

Additive  engineering  plays  an  important  role  in  making
high-quality  low-Eg perovskite  films,  but  the  underlying  me-

chanisms are  not  fully  understood yet.  Herz et  al.  systematic-
ally investigated the effect of the commonly used SnF2 addit-
ive  on  the  structure  and  optoelectronic  properties  of
FA0.83Cs0.17SnxPb1−xI3 (0 ≤ x ≤ 1)  perovskite  films[17].  Detailed
XRD characterizations  on the  films  with  different  Sn:Pb ratios
and SnF2 content indicated that SnF2 improved the quality of
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Fig. 1. (Color online) (a) Schematic illustration of antioxidation and defect passivation by FSA at grain surfaces (including film surface and grain
boundary) in mixed Pb–Sn perovskite films. A-site represents the site of monovalent cations. (b) PL imaging and (c) zoomed-in micro-PL map-
ping for the control and FSA-containing films on glass substrates (size 2.5 × 2.5 cm2). The colour bars stand for the normalized PL intensity. Repro-
duced with permission[15], Copyright 2020, Nature Publishing Group.
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Fig. 2. (Color online) (a) Schematic illustration for the two-step bilayer interdiffusion growth process. (b) Maximum power point (MPP) tracking
on a FA0.85MA0.1Cs0.05Sn0.5Pb0.5I3 solar cell and a 2-T all-perovskite tandem solar cell with encapsulation measured in air under simulated AM 1.5G
illumination. Reproduced with permission[16], Copyright 2020, Nature Publishing Group.
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mixed  Sn–Pb  perovskite  films via preventing  formation  of  Sn
vacancies  and  associated  lattice  strain.  Samples  without  SnF2

exhibit  significant  tetragonal  lattice  distortion  which  can  be
greatly  restrained  by  addition  of  SnF2.  They  also  measured
terahertz  (THz)  transmission  spectra  for  the  samples  in  dark
to  reveal  the  impact  of  Sn:Pb  ratio  and  SnF2 content.  The
background  doping  density  caused  by  Sn  oxidation  in
FA0.83Cs0.17SnxPb1−xI3 films  was  obtained  by  THz  conductivity
spectra  and  optical-pump-THz-probe  (OPTP)  measurements.
The  decrease  in  background  hole  doping  density  with  the
SnF2 incorporation  suggested  that  Sn  oxidation  was  sup-
pressed. Overall, the role of SnF2 additive in mixed Sn–Pb per-
ovskite films is reducing the background hole density via sup-
pressing Sn2+ oxidation, thus prolonging carrier lifetimes, mitig-
ating energetic disorder, and improving carrier mobilities.

To  further  develop  mixed  Sn–Pb  perovskite  films  and
devices, attentions should be paid to following aspects: (1) Pre-
venting  the  oxidation  of  Sn2+ to  Sn4+,  which  could  result  in
short carrier lifetimes, short carrier diffusion lengths, and high
defect  density[14].  Better  antioxidants  and  passivation  materi-
als  are  expected  to  eliminate  the  carrier  recombination  cen-
ters  and  make  high-quality  mixed  Sn–Pb  perovskite  films[15].
(2) Slowing down the crystallization by regulating the prepara-
tion  process  or  additives.  Rapid  crystallization  generally  res-
ults  in  small  grains,  leading  to  increased  defects  at  grain
boundaries  or  in  grains,  limiting  device  performance.  (3)  Im-
proving  the  operational  stability.  Suppressing  Sn2+ oxidation
and reducing MA+ content are beneficial for stability enhance-
ment.  (4)  Developing  suitable  techniques  to  make  large-area
Sn-Pb  perovskite  films  and  devices,  and  all-perovskite  solar
modules with a tandem structure[18].
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